Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Sci Transl Med ; 14(629): eabj5305, 2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-2325160

ABSTRACT

Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic, especially in low- and middle-income countries. Although vaccines against SARS-CoV-2 based on mRNA and adenoviral vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are required to meet global demand. Protein subunit vaccines formulated with appropriate adjuvants represent an approach to address this urgent need. The receptor binding domain (RBD) is a key target of SARS-CoV-2 neutralizing antibodies but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists alone or formulated with aluminum hydroxide (AH) and benchmarked them against AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that an AH and CpG adjuvant formulation (AH:CpG) produced an 80-fold increase in anti-RBD neutralizing antibody titers in both age groups relative to AH alone and protected aged mice from the SARS-CoV-2 challenge. The AH:CpG-adjuvanted RBD vaccine elicited neutralizing antibodies against both wild-type SARS-CoV-2 and the B.1.351 (beta) variant at serum concentrations comparable to those induced by the licensed Pfizer-BioNTech BNT162b2 mRNA vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and enhanced cytokine and chemokine production in human mononuclear cells of younger and older adults. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups.


Subject(s)
Aluminum Hydroxide , COVID-19 , Aged , Animals , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Humans , Mice , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
2.
Cell Rep ; 38(8): 110399, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1664737

ABSTRACT

Follicular helper T (Tfh) cells promote, whereas follicular regulatory T (Tfr) cells restrain, germinal center (GC) reactions. However, the precise roles of these cells in the complex GC reaction remain poorly understood. Here, we perturb Tfh or Tfr cells after SARS-CoV-2 spike protein vaccination in mice. We find that Tfh cells promote the frequency and somatic hypermutation (SHM) of Spike-specific GC B cells and regulate clonal diversity. Tfr cells similarly control SHM and clonal diversity in the GC but do so by limiting clonal competition. In addition, deletion of Tfh or Tfr cells during primary vaccination results in changes in SHM after vaccine boosting. Aged mice, which have altered Tfh and Tfr cells, have lower GC responses, presenting a bimodal distribution of SHM. Together, these data demonstrate that GC responses to SARS-CoV-2 spike protein vaccines require a fine balance of positive and negative follicular T cell help to optimize humoral immunity.


Subject(s)
COVID-19/prevention & control , Germinal Center/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Aging , Animals , Antibodies, Viral/blood , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19/virology , Germinal Center/cytology , Germinal Center/metabolism , Immunity, Humoral , Mice , Mice, Inbred C57BL , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Vaccination , Vaccines, Subunit/immunology
SELECTION OF CITATIONS
SEARCH DETAIL